STABILITY OF SINGIE-FREQUENCY PERIODIC
 SOLUTIONS OF QUASI-IINEAR SELF-CONTAINED SYSTEMS WITH TWO DEGREES OF FREEDOM

(USTOIOHIVOST' ODAOCHASTOMNKH PERIODIOHESKCHG RESHENII KVAZILINEINYKA AVTONOATYKI SISTEM S DVUMIA STEPERIIANI SVOBODY)

PMM Vol.29, NR 5, 1965, pp.939-945
A.P.PROSKURIAKOV
(Moscow)
(Received April 13, 1965)

1. Let us consider a quasi-linear self-contained system with two degrees of freedom of the form

$$
\begin{equation*}
x_{i} \ddot{+}+\omega_{i}^{2} x_{i}=\mu F_{i}\left(x_{1}, x_{2}, x_{1}{ }^{\bullet}, x_{2}{ }^{\bullet}, \mu\right) \quad(i=1,2) \tag{1.1}
\end{equation*}
$$

The function F_{1} is analytic in its arguments and μ is a small parameter. It is assumed that the frequencies ω_{1} and ω_{a} are incommensurable.

As is known [1], the system (I.1) can be obtained by means of a linear transformation from a quasi-linear system of general form, the generating system ($\mu=0$) of which is a conservative system with potential energy represented in a difinite positive quadratic form.

The initial conditions are assumed as follows [1] :

$$
\begin{equation*}
x_{1}(0)=A_{0}+\beta, \quad x_{1}^{\cdot}(0)=0, \quad x_{2}(0)=\varphi, \quad x_{2} \cdot(0)=\psi \tag{1.2}
\end{equation*}
$$

The quantities B, \varnothing and are functions of μ which are expandable in integral, and B in some cases fractional powers of the parameter, and vanishing for $\mu=0$. Furthermore, it is assumed that φ and depend also on $A_{0}+B$. Thus, we have

$$
\begin{aligned}
& \varphi\left(A_{0}+\beta, \mu\right)=\sum_{n=1}^{\infty}\left[p_{n}\left(A_{0}\right)+\frac{d p_{n}}{d A_{0}} \beta+\cdots\right] \mu^{n} \\
& \psi\left(A_{0}+B, \mu\right)=\sum_{n=1}^{\infty}\left[q_{n}\left(A_{0}\right)+\frac{d q_{n}}{d A_{0}} \beta+\cdots\right] \mu^{n}
\end{aligned}
$$

The periodic solution of the system (1.1) with period $T_{1}{ }^{*} \therefore 2 \pi / \omega_{1}+a^{*}$ can be expressed in the form

$$
\begin{gather*}
x_{1}(t)=\left(A_{0}+\beta\right) \cos \omega_{1} t+\sum_{n=1}^{\infty}\left[C_{1 n}(t)+\frac{d C_{1 n}(t)}{d A_{0}} \beta+\frac{1}{2} \frac{d^{2} C_{1 n}(t)}{d A_{0}^{2}} \beta^{2}+\cdots\right] \mu^{n} \\
x_{2}(t)=\varphi \cos \omega_{2} t+\frac{\psi}{\omega_{2}} \sin \omega_{2} t+\sum_{n=1}^{\infty}\left[C_{2 n}(t)+\frac{d C_{2 n}(t)}{d A_{0}} \beta+\cdots\right] \mu^{n} \tag{1.3}\\
1106
\end{gather*}
$$

The functions $C_{1,}(t)$ depend on all initial conditions and, consequently, are composite functions of $A_{0}+B$. The derivatives of these functions with respect to A_{0} are computed by taling th s fact into consideration. The functions $C_{1 n}(t)$ for $B=0$ are determined according to Formulas

$$
\begin{equation*}
C_{i n}(t)=\frac{1}{\omega_{i}} \int_{0}^{t} H_{i n}\left(t_{1}\right) \sin \omega_{i}\left(t-t_{1}\right) d t_{1}, \quad H_{i n}(t)=\frac{1}{(n-1)!}\left(\frac{d^{n-1} F_{i}}{d \mu^{n-1}}\right)_{\beta=\mu=0} \tag{1.4}
\end{equation*}
$$

Let us introduce new functions

$$
D_{n}(t)=C_{2 n}(t)+p_{n} \cos \omega_{2} t+\frac{q_{n}}{\omega_{2}} \sin \omega_{2} t
$$

Then the values of the quantities $H_{1 n}(t)$ in the expanded form will be

$$
H_{i 1}(t)=F_{i}\left(x_{10}, x_{20}, x_{10^{\circ}}, x_{20^{\circ}}, 0\right)
$$

$$
H_{i 2}(t)=\left(\frac{\partial F_{i}}{\partial x_{1}}\right)_{0} C_{11}(t)+\left(\frac{\partial F_{i}}{\partial x_{2}}\right)_{0} D_{1}(t)+\left(\frac{\partial F_{i}}{\partial x_{1}}\right)_{0} C_{11}^{*}(t)+\left(\frac{\partial F_{i}}{\partial x_{2}}\right)_{0} D_{1}(t)+\left(\frac{\partial F_{i}}{\partial \mu}\right)_{0}
$$

etc.

The subscript 0 in the F derivatives indicates that for $\mu=0$, instead of $x_{1}, x_{2}, x_{1} \cdot, x_{2}$ and μ, the values of these quantities, i.e. $x_{10}, x_{30}, x_{20}{ }^{\circ}, x_{20}$ and 0 should be substituted into the derivatives.

In order to represent the solution as a series in μ with coefficients whose period $T_{1}=2 \pi / \omega_{1}$ is independent of μ, the transformation of time t is utilized. To retain the solution in the form (1.3), the coefficients of this transformation must be functions of $A_{0}+\beta$. Therefore, the transformation will be in the form

$$
\begin{equation*}
t=\tau\left[1+\frac{1}{T_{1}} \sum_{n=1}^{\infty} N_{n}\left(A_{0}+\beta\right) \mu^{n}\right]=h \tau \tag{1.6}
\end{equation*}
$$

For a system with a single degree of freedom the values of the coefficients N_{a} for $\beta=0$ are given in [2]. In the present case we have

$$
\begin{equation*}
N_{1}=\frac{1}{A_{0} \omega_{1}^{2}} C_{11}^{*}\left(T_{1}\right), \quad N_{2}=\frac{1}{A_{0} \omega_{1}^{2}}\left[C_{12} \cdot\left(T_{1}\right)+N_{1} C_{11} \because\left(T_{1}\right)\right] \quad \text { etc } \tag{1.7}
\end{equation*}
$$

Using the substitution (1.6) we get

$$
x_{i}(t)=x_{i}(h \tau)=z_{i}(\tau), \quad x^{\prime}(t)=z_{i}^{\prime}(\tau) \frac{1}{h}
$$

The system (1.1) becomes

$$
z_{i}^{\prime \prime}+h^{2} \omega_{i}^{2} z_{i}=\mu h^{2} F_{i}\left(z_{1}, z_{2}, z_{1}^{\prime} \frac{1}{h}, z_{2}^{\prime} \frac{1}{h}, \mu\right)
$$

This system can also be expressed as

$$
\begin{equation*}
z_{i}^{\prime \prime}+\omega_{i}^{2} z_{i}=\mu \Phi_{i}\left(z_{1}, z_{2}, z_{1}^{\prime}, z_{2}^{\prime}, \mu\right) \quad(i=1,2) \tag{1.8}
\end{equation*}
$$

Here

$$
\begin{equation*}
\Phi_{i}\left(z_{1}, z_{2}, z_{1}^{\prime}, z_{2}^{\prime}, \mu\right)=h^{2} F_{i}\left(z_{1}, z_{2}, z_{1}^{\prime} \frac{1}{h}, z_{2}^{\prime} \frac{1}{h}, \mu\right)-\frac{h^{2}-1}{\mu} \omega_{i}^{2} z_{i} \tag{1.9}
\end{equation*}
$$

The solution of the system (1.8) can be expressed in the same form as that of the system (1.1)

$$
\begin{align*}
z_{1}(\tau)=\left(A_{0}+\beta\right) \cos \omega_{1} \tau+\sum_{n=1}^{\infty}\left[C_{1 n}^{*}(\tau)+\frac{d C_{1 n}^{*}(\tau)}{d A_{0}} \beta+\frac{1}{2} \frac{d^{2} C_{1 n}^{*}(\tau)}{d A_{0}^{2}} \beta^{2}+\cdots\right] \mu^{n} \\
z_{2}(\tau)=\varphi \cos \omega_{2} \tau+\frac{\psi}{\omega_{2}} \sin \omega_{2} \tau+\sum_{n=1}^{\infty}\left[C_{2 n}^{*}(\tau)+\frac{d C_{2 n}^{*}(\tau)}{d A_{0}} \beta+\cdots\right] \mu^{n} \tag{1.10}
\end{align*}
$$

Introducing the notation

$$
D_{n}^{*}(\tau)=C_{2 n}^{*}(\tau)+p_{n} \cos \omega_{n} \tau+\frac{q_{n}}{\omega_{2}} \sin \omega_{2} \tau \quad H_{i n}^{*}(\tau)=\frac{1}{(n-1)}\left(\frac{d^{n-1} \Phi_{i}}{d \mu^{n-1}}\right)_{\beta=\mu=0}
$$

then for the quantities $H_{1 \mathrm{a}^{*}}(\tau)$ the formulas analogous to (1.5) will take place

$$
\begin{gathered}
H_{i 1} *^{*}(\tau)=\Phi_{i}\left(z_{10}, z_{20}, z_{10^{\prime}}, z_{20^{\prime}}, 0\right) \\
H_{i 2}^{*}(\tau)=\left(\frac{\partial \Phi_{i}}{\partial z_{1}}\right)_{0} C_{11^{*}}(\tau)+\left(\frac{\partial \Phi_{i}}{\partial z_{2}}\right)_{0} D_{1^{*}}{ }^{*}(\tau)+\left(\frac{\partial \Phi_{i}}{\partial z_{1}^{\prime}}\right)_{0} C_{11^{\prime}} *^{\prime}(\tau)+ \\
+\left(\frac{\partial \Phi_{i}}{\partial z_{2}^{\prime}}\right)_{0} D_{1^{*}}{ }^{\prime}(\tau)+\left(\frac{\partial \Phi_{i}}{\partial \mu}\right)_{0} \text { etc. }
\end{gathered}
$$

The functions $C_{10}{ }^{*}(\tau)$ and $C_{1 \mathrm{n}}(\tau)$ are related as follows:

$$
C_{11}{ }^{*}(\tau)=C_{11}(\tau)-\frac{1}{T_{1}} N_{1} A_{0} \omega_{1} \tau \sin \omega_{1} \tau
$$

$$
\begin{equation*}
C_{12}{ }^{*}(\tau)=C_{12}(\tau)+\frac{1}{T_{1}} N_{1} \tau C_{11^{\prime}}(\tau)-\frac{1}{T_{1}} N_{2} A_{0} \omega_{1} \tau \sin \omega_{1} \tau-\frac{1}{2} \frac{1}{T_{1}{ }^{2}} N_{1^{2}} A_{0} \omega_{1}{ }^{2} \tau^{2} \cos \omega_{1} \tau \tag{1.11}
\end{equation*}
$$ etc.

Analogously, for the functions $C_{2 \pi}^{*}(\tau)$ as well as for the quantities
$*(\tau)$ the corresponding formulas can be written. It is not difficult to $H_{1 n}{ }^{*}(\tau)$ the corresponding formulas can be written. It is not difficult to show that

$$
\begin{equation*}
C_{1 n}^{*}\left(T_{1}\right)=M_{n} \tag{1.12}
\end{equation*}
$$

The values of the quantities N_{n} for a single degree of freedom are given in [2]. In the present case

$$
\begin{equation*}
M_{1}=C_{11}\left(T_{1}\right), \quad M_{2}=C_{12}\left(T_{1}\right)+\frac{1}{2 A_{0} \omega_{1}^{2}} C_{11}{ }^{2}\left(T_{1}\right) \quad \text { etc. } \tag{1.13}
\end{equation*}
$$

Proceeding from the initial condition $z_{1}{ }^{\prime}(0)=0$, it is easy to see that

$$
\begin{equation*}
C_{1 n}{ }^{*^{\prime}}\left(T_{1}\right)=0 \tag{1.14}
\end{equation*}
$$

Since this equality is fulfilled identically, the derivatives of any order of $C_{1 i}{ }^{*^{\prime}}\left(T_{1}\right)$ with respect to A_{0} are also equal to zero.
2. Let us investigate the stability of the periodic solutions of system (1.8) with period T_{1} with the assumption that ω_{1} and ω_{2} are incommensurable. We will consider the cases when the equation defining the amplitude A_{0}

$$
\begin{equation*}
C_{11} *\left(T_{1}\right)=C_{11}\left(T_{1}\right)=0 \tag{2.1}
\end{equation*}
$$

has not only simple, but also double and triple roots.
We construct the equations in variations for the system (1.8). We have

$$
\begin{equation*}
y_{i}^{\prime \prime}+\omega_{i}{ }^{2} y_{i}=\mu\left[\frac{\partial \Phi_{i}}{\partial z_{1}} y_{1}+\frac{\partial \Phi_{i}}{\partial z_{2}} y_{2}+\frac{\partial \Phi_{i}}{\partial z_{1}^{\prime}} y_{1}+\frac{\partial \Phi_{i}}{\partial z_{2}^{\prime}}{ }^{\prime} y_{2^{\prime}}\right] \quad(i=1,2) \tag{2.2}
\end{equation*}
$$

At the same time it is assumed that in the functions Φ_{1} was substituted the periodic solution $z_{1}(\tau)$ and $z_{2}(T)$ with the period $T_{1}=2 \pi / \omega_{1}$. The solution of the equations in variations will be sought in the form [3]

$$
\begin{equation*}
y_{1}(\tau)=e^{\alpha \tau} u(\tau), \quad y_{2}(\tau)=e^{\alpha \tau} v(\tau) \tag{2.3}
\end{equation*}
$$

where $u(T)$ and $v(\tau)$ are periodic functions of T with period T_{1}, while α is the characteristic exponent. Substituting (2.3) for $\nu_{1}(\tau)$ and $y_{2}(\tau)$ in Equations (2.2), we will obtain the equations for determination of the functions $u(\tau)$ and $v(\tau)$ as well as the characteristic exponent α

$$
\begin{gathered}
u^{\prime \prime}+2 \alpha u^{\prime}+\left(\alpha^{2}+\omega_{1}^{2}\right) u=\mu\left[\left(\frac{\partial \Phi_{1}}{\partial z_{1}}+\alpha \frac{\partial \Phi_{1}}{\partial z_{1}^{\prime}}\right) u+\frac{\partial \Phi_{1}}{\partial z_{1}^{\prime}} u^{\prime}+\left(\frac{\partial \Phi_{1}}{\partial z_{2}}+\alpha \frac{\partial \Phi_{1}}{\partial z_{2}^{\prime}}\right) v+\frac{\partial \Phi_{1}}{\partial z_{2}^{\prime}} v^{\prime}\right] \\
v^{\prime \prime}+2 \alpha v^{\prime}+\left(\alpha^{2}+\omega_{2}^{2}\right) v=\mu\left[\left(\frac{\partial \Phi_{2}}{\partial z_{1}}+\alpha \frac{\partial \Phi_{2}}{\partial z_{1}^{\prime}}\right) u^{\prime}+\frac{\partial \Phi_{2}}{\partial z_{1}^{\prime}} u^{\prime}+\left(\frac{\partial \Phi_{2}}{\partial z_{2}}+\alpha \frac{\partial \Phi_{2}}{\partial z_{2}^{\prime}}\right) v+\frac{\partial \Phi_{2}}{\partial z_{2}^{\prime}} v^{\prime}\right](2.4)
\end{gathered}
$$

The functions $u(\tau)$ and $v(\tau)$, as well as the characteristic exponent α can be expanded in series in integral or fractional powers of μ.

Since the frequencies of the generating system are equal to ω_{1} and ω_{2}, the roots of the corresponding fundamental equation [3] are equal to t t ω_{1}
and $\pm t w_{a}$. For a periodic solution of the system (1.8), with period T_{1}, the first two roots are critical and the second not critical.
3. Let us comp te the characteristic exponent $\alpha^{(1)}$ for the critical roots. Note that in expanding this exponent in μ the constant term can be omitted. This follows from the fact that the quantity

$$
e^{\alpha_{0} \tau}=e^{ \pm i \omega_{1} \tau}=\cos \omega_{1} \tau \pm i \sin \omega_{1} \tau
$$

is a periodic function of T with period T_{1} and, consequently, can be included in the function $u(\tau)$ and $v(\tau)$.

Let us first consider the case when the periodic solution of the generating system is expanded in power series in $\mu^{1 / 2}$. We have

$$
\begin{gather*}
\alpha^{(1)}=\alpha_{1 / 2} \mu^{1 / 2}+\alpha_{1} \mu+\alpha_{3 / 2} \mu^{3 / 2}+\cdots \\
u^{(1)}(\tau)=u_{0}(\tau)+\mu^{1 / 2} u_{1 / 2}(\tau)+\mu u_{1}(\tau)+\cdots \tag{3.1}\\
v^{(1)}(\tau)=v_{0}(\tau)+\mu^{1 / 2} v_{1 / 2}(\tau)+\mu v_{1}(\tau)+\cdots
\end{gather*}
$$

Let $\mu=0$ in Equations (2.4). We have

$$
u_{0}^{\prime \prime}+\omega_{1}^{2} u_{0}=0, \quad v_{0}^{\prime \prime}+\omega_{2}^{2} v_{0}=0
$$

Hence

$$
\begin{equation*}
u_{0}(\tau)=P_{0} \cos \omega_{1} \tau+Q_{0} \sin \omega_{1} \tau, \quad v_{0}(\tau)=0 \tag{3.2}
\end{equation*}
$$

Equating to each other terms with $\mu^{\frac{1}{2}}$ in Equations (2.4), we have

$$
u_{1 / 2}^{\prime \prime}+\omega_{1}^{2} u_{1 / 2}=-2 \alpha_{1 / 2} u_{0}^{\prime}, \quad v_{1 / 2}^{\prime \prime}+\omega_{2}^{2} v_{1 / 2}=0
$$

It follows from the periodicity conditions of the function $u_{1 / 2}(\tau)$ that

$$
\begin{equation*}
\alpha_{1 / 2}=0 \tag{3.3}
\end{equation*}
$$

where this is a double root. Thus we obtain

$$
\begin{equation*}
u_{1 / 2}(\tau)=P_{1 / 2} \cos \omega_{1} \tau+Q_{1 / 2} \sin \omega_{1} \tau, \quad v_{1 / 2}(\tau)=0 \tag{3.4}
\end{equation*}
$$

Furthermore, in (2.4) we equate the terms with μ in first power. After certain transformations we get

$$
\begin{gather*}
u_{1}^{\prime \prime}+\omega_{1}^{2} u_{1}=P_{0} K_{1}(\tau)+Q_{0} L_{1}(\tau) \\
v_{1}^{\prime \prime}+\omega_{2}^{2} v_{1}=P_{0}\left(\frac{\partial \Phi_{2}}{\partial A_{0}}\right)_{0}-Q_{0} \frac{1}{A_{0} \omega_{1}}\left(\frac{\partial \Phi_{2}}{\partial \tau}\right)_{0} \tag{3.5}
\end{gather*}
$$

Here

$$
\begin{equation*}
L_{1}(\tau)=-\frac{1}{A_{0} \omega_{1}}\left(\frac{\partial \Phi_{1}}{\partial \tau}\right)_{0}-2 \alpha_{1} \omega_{1} \cos \omega_{1} \tau \tag{3.6}
\end{equation*}
$$

The periodicity conditions for the function $u_{2}(\tau)$

$$
\int_{0}^{T_{1}}\left[P_{0} K_{1}(\tau)+Q_{0} L_{1}(\tau)\right]\binom{\cos \omega_{1} \tau}{\sin \omega_{1} \tau} d \tau=0
$$

lead to Equations

$$
P_{0}\left(\omega_{1} \frac{d C_{11}{ }^{*}}{d A_{0}}-2 \pi \alpha_{1}\right)=0, \quad Q_{0}\left(-2 \pi \alpha_{1}\right)=0
$$

Two solutions are possible for these equations
or

$$
\begin{equation*}
\alpha_{1}=\frac{1}{T_{1}} \frac{d C_{11}}{d A_{0}}, \quad Q_{0}=0 \tag{3.7}
\end{equation*}
$$

$$
\begin{equation*}
\alpha_{1}=0, \quad P_{0}=0 \tag{3.8}
\end{equation*}
$$

Here and in what follows the absence of the argument in the $C_{1 a}$ functions or their derivatives means that these functions or their derivatives are evaluated at $\tau=T_{1}$.

The functions $u_{1}(\tau)$ is defined by Formula

$$
\begin{gather*}
u_{1}(\tau)=P_{1} \cos \omega_{1} \tau+Q_{1} \sin \omega_{1} \tau+P_{0}\left[\frac{d C_{11}^{* \prime}(\tau)}{d A_{0}}-\alpha_{1} \tau \cos \omega_{1} \tau\right]- \\
-Q_{0}\left[\frac{1}{A_{0} \omega_{1}} C_{11}^{* \prime}(\tau)+\alpha_{1} \tau \sin \omega_{1} \tau\right] \tag{3.9}
\end{gather*}
$$

Here the terms proportional to sin $\omega_{1} T$ with coefficients independent of τ, which must be placed in parentheses at P_{0} and Q_{0}, are included in $\theta_{1} \sin \omega_{1} \tau$.

The general solution of the second equation in (3.5) is

$$
\begin{aligned}
& v_{1_{*}}(\tau)=R_{1} \cos \omega_{2} \tau+S_{1} \sin \omega_{2} \tau+P_{0} \frac{d C_{21}^{*}(\tau)}{d A_{0}}+ \\
& \quad+Q_{0} \frac{1}{A_{0} \omega_{1}}\left[\frac{1}{\omega_{2}} H_{21}^{*}(0) \sin \omega_{2} \tau-C_{21}^{* \prime}(\tau)\right]
\end{aligned}
$$

Choosing the arbitrary constants R_{1} and S_{1} in a definite manner, we can obtain a periodic solution with the period T_{1}

$$
\begin{equation*}
v_{1}(\tau)=P_{0} \frac{d D_{1}^{*}(\tau)}{d A_{0}}-Q_{0} \frac{1}{A_{0} \omega_{1}} D_{1}^{* \prime}(\tau) \tag{3.10}
\end{equation*}
$$

Next, the equation for $u_{s / 8}(\tau)$ is constructed. After a number of transformations we get

$$
u_{3 / 2}{ }^{\prime \prime}+\omega_{1}{ }^{2} u_{3 / 2}=P_{0} K_{2 / 2}(\tau)+Q_{0} L_{3 / 2}(\tau)+P_{1 / 2} K_{1}(\tau)+Q_{1 / 2} L_{1}(\tau)
$$

The following notation is used here:

$$
\begin{gather*}
K_{3 / 2}(\tau)=A_{1 / 2}\left(\frac{\partial^{2} \Phi_{1}}{\partial A_{0}^{2}}\right)_{0}+2 \alpha_{3 / 2} \omega_{1} \sin \omega_{1} \tau \tag{3.11}\\
L_{3 / 2}(\tau)=-\frac{A_{1 / 2}}{A_{0} \omega_{1}}\left[\left(\frac{\partial^{2} \Phi_{1}}{\partial \tau \partial A_{0}}\right)_{0}-\frac{1}{A_{0}}\left(\frac{\partial \Phi_{1}}{\partial \tau}\right)_{0}\right]-2 \alpha_{3 / 2} \omega_{1} \cos \omega_{1} \tau
\end{gather*}
$$

The periodicity conditions lead to Equations

$$
\begin{gathered}
P_{0}\left(A_{1 / 2} \omega_{1} \frac{d^{2} C_{11}^{*}}{d A_{0}^{2}}-2 \pi \alpha_{3 / 2}\right)+P_{1 / 2}\left(\omega_{1} \frac{d C_{11}^{*}}{d A_{0}}-2 \pi \alpha_{1}\right)=0 \\
Q_{0}\left(A_{1 / 2} \frac{\omega_{1}}{A_{0}} \frac{d C_{11}^{*}}{d A_{0}}-2 \pi \alpha_{3 / 2}\right)-Q_{1 / 2} 2 \pi \alpha_{1}=0
\end{gathered}
$$

If $\alpha_{1}=\frac{1}{T_{1}} \frac{d C_{11}}{d A_{0}}$, then $Q_{0}=0$ and consequently

$$
\begin{equation*}
\alpha_{3 / 2}=\frac{1}{T_{1}} A_{1 / 2} \frac{d^{2} C_{11}}{d A_{0}^{2}}, \quad Q_{1 / 2}=0 \tag{3.12}
\end{equation*}
$$

If $\alpha_{1}=0$, then $P_{0}=0$ and consequentily

$$
\begin{equation*}
\alpha_{1 / 2}=\frac{1}{T_{1}} \frac{A_{1 / 2}}{A_{0}} \frac{d C_{11}}{d A_{0}}=0, \quad P_{1 / 2}=0 \tag{3.13}
\end{equation*}
$$

since for $d C_{11} / d A_{0} \neq 0$ we have $A_{1 / 2}=0$.
Finally, the equation for $u_{2}(T)$ is constructed. Here it is assumed that $d C_{11} / d d_{0}=0$ and, consequently, $\quad \alpha_{1}=0$. After quite unwieldy transformations there results

$$
u_{2}^{\prime \prime}+\omega_{1}^{2} u_{u_{2}}=\sum_{s=0,1 / g, 1}\left[P_{8} K_{2-s}(\tau)+Q_{s} I_{2-s}(\tau)\right]
$$

Here

$$
\begin{aligned}
K_{2}(\tau) & =\frac{1}{2} A_{1 / 3}^{2}\left(\frac{\partial^{3} \Phi_{1}}{\partial A_{0}^{8}}\right)_{0}+A_{1}\left(\frac{\partial^{2} \Phi_{1}}{\partial A_{0}^{2}}\right)_{0}+\frac{\partial H_{12}{ }^{*}(\tau)}{\partial A_{0}}+2 \alpha_{2} \omega_{1} \sin \omega_{1} \tau \\
L_{2}(\tau)= & -\frac{1}{A_{0} \omega_{1}}\left\{\frac{1}{2} A_{1_{2}}{ }^{2}\left[\left(\frac{\partial^{3} \Phi_{1}}{\partial \tau \partial A_{0}^{2}}\right)_{0}-\frac{2}{A_{0}}\left(\frac{\partial^{2} \Phi_{1}}{\partial \tau \partial A_{0}}\right)_{0}+\frac{2}{A_{0}^{2}}\left(\frac{\partial \Phi_{1}}{\partial \tau}\right)_{0}\right]+\right. \\
+ & \left.A_{1}\left[\left(\frac{\partial^{2} \Phi_{1}}{\partial \tau \partial A_{0}}\right)_{0}-\frac{1}{A_{0}}\left(\frac{\partial \Phi_{1}}{\partial \tau}\right)_{0}\right]+\frac{\partial H_{12}^{*}(\tau)}{\partial \tau}\right\}-2 \alpha_{0} \omega_{1} \cos \omega_{1} \tau
\end{aligned}
$$

The periodicity conditions lead to Equations

$$
\begin{align*}
& P_{0}\left(\frac{1}{2} A_{1 / 2}{ }^{2} \omega_{1} \frac{d^{3} C_{11}{ }^{*}}{d A_{0}{ }^{3}}+A_{1} \omega_{1} \frac{d^{2} C_{11}{ }^{*}}{d A_{0}{ }^{2}}+\omega_{1} \frac{d C_{12^{*}}}{d A_{0}}-2 \pi \alpha_{2}\right)+ \tag{3.14}\\
&+P_{1 / 2}\left(A_{1 / 2} \omega_{1} \frac{d^{2} C_{11}{ }^{*}}{d A_{0}{ }^{2}}-2 \pi \alpha_{1 / 2}\right)=0 \\
& Q_{0}\left(\frac{1}{2} A_{1 / 2} \frac{\omega_{1}}{A_{0}} \frac{d^{2} C_{11}{ }^{*}}{d A_{0}{ }^{2}}+\frac{\omega_{1}}{A_{0}} C_{12}{ }^{*}\left(T_{1}\right)-2 \pi \alpha_{2}\right)-Q_{1 / 2} 2 \pi x_{3 / 2}=0
\end{align*}
$$

For the first branch of the characteristic exponent we obtain

$$
\begin{equation*}
\alpha_{2}=\frac{1}{T_{1}}\left(\frac{1}{2} A_{1 / 2}{ }^{2} \frac{d^{3} C_{11}}{d A_{0}{ }^{3}}+A_{1} \frac{d^{2} C_{11}}{d A_{0}{ }^{2}}+\frac{d M_{2}}{d A_{0}}\right) \tag{3.15}
\end{equation*}
$$

For the second branch we have

$$
\begin{equation*}
\alpha_{2}=\frac{1}{T_{1} A_{0}}\left(\frac{1}{2} A_{1 / 2}^{2} \frac{d^{2} C_{11}}{d A_{0}^{2}}+M_{2}\right)=0 \tag{3.16}
\end{equation*}
$$

since the expression in the parentheses is equal to zero in view of the equation [2] which determines the coefficient $A_{1 / ;}$

The subsequent coefficients of the $\alpha^{(1)}$ expansion were not evaluated. Thus, we have

$$
\begin{equation*}
\alpha^{(1)}=\frac{1}{T_{1}}\left[\frac{d C_{11}}{d A_{0}} \mu+A_{1 / 2} \frac{d^{2} C_{11}}{d A_{0}^{2}} \mu^{1 / 2}+\left(\frac{1}{2} A_{1 / 2} \frac{d^{3} C_{11}}{d A_{0}^{3}}+A_{1} \frac{d^{2} C_{11}}{d A_{0}^{2}}+\frac{d M_{2}}{d A_{0}}\right) \mu^{2}+\cdots\right] \tag{3.17}
\end{equation*}
$$

for the first branch and $\alpha^{(1)}=0$ for the second branch of the characteristic exponent corresponding to the critical roots of the fundamental equation.
4. For triple roots of Equation (2.1) it is possible to have periodic solutions of the system (1.8) with a period T_{1} which are represented by series in integral powers of $\mu^{1 / 2}$. In this case the characteristic exponent $a^{(1)}$, and the functions $u^{(1)}(\tau)$ and $v^{(1)}(\tau)$ can also be expanded in series in powers of $\mu^{1 / 8}$. For example,

$$
\begin{equation*}
\alpha^{(1)}=\alpha_{1 / 3} \mu^{1 / 3}+\alpha_{2 / 3} \mu^{2 / 3}+\alpha_{1} \mu+\cdots \tag{4.1}
\end{equation*}
$$

Computing the coefficients of this series by the method analogous to the previous one, and taking into account the fact that in the present case

$$
\frac{d C_{11}}{d A_{0}}=\frac{d^{2} C_{11}}{d A_{0}^{2}}=0
$$

we will obtain for both branches of the characteristic exponent

$$
\begin{equation*}
\alpha_{1 / 3}=\alpha_{2 / 3}=\alpha_{4,3}=0 \tag{4.2}
\end{equation*}
$$

For the first branch we will also have

$$
\begin{gather*}
\alpha_{1}=\frac{1}{T_{1}} \frac{d C_{11}}{d A_{0}}, \quad \alpha_{5 / 3}=\frac{1}{2 T_{1}} A_{1 / 3}{ }^{2} \frac{d^{3} C_{11}}{d A_{0}^{3}} \\
\alpha_{2}=\frac{1}{T_{1}}\left(\frac{1}{6} A_{1 / 3}^{3} \frac{d^{4} C_{11}}{d A_{0^{4}}}+A_{1 / 3} A_{1 / 3} \frac{d^{3} C_{11}}{d A_{0}^{3}}+\frac{d M_{2}}{d A_{0}}\right) \tag{4.3}
\end{gather*}
$$

The subsequent coefficients of $u_{n / 3}$ were not computed.
5. Let us turn now to the calculation of the characteristic exponent $a^{(2)}$ for the noncritical roots of the fundamental equation in system (1.8). We will invesifgate the case when the periodic solution of this system is expanded into a power series in $\mu^{\prime \prime}:$. Then

$$
\begin{equation*}
a^{(2)} \because=\alpha_{0}+\alpha_{1,2} \mu^{1 / 2}-\alpha_{1} \mu+\ldots, \quad \alpha_{0}= \pm i \omega_{2} \tag{5.1}
\end{equation*}
$$

The functions $u^{(2)}(\tau)$ and $v^{(2)}(\tau)$ are also expanded in series of. $\mu^{1 / 2}$. These functions must be periodic with period T_{1}

From Equation (2.4) for $\mu w 0$ we obtain

$$
\begin{equation*}
u_{0}^{\prime \prime}+2 \alpha_{0} u_{0}^{\prime}+\left(\omega_{1}^{2}-\omega_{2}{ }^{2}\right) u_{0}=0, \quad \nu_{0}^{\prime \prime}+2 \alpha_{0} v_{0}^{\prime}=0 \tag{5.2}
\end{equation*}
$$

We seek the solution of these equations in the form

$$
u_{0}(\tau)=U_{0} e^{i m \tau}, \quad v_{0}(\tau)=V_{0} e^{i n \tau}
$$

Substituting these expressions into (5.2), we find

$$
\begin{equation*}
m_{1}= \pm\left(\omega_{1}-\omega_{2}\right), \quad m_{2}=\mp\left(\omega_{1}+\omega_{2}\right), \quad n_{1}=0, \quad n_{2}=\mp 2 \omega_{2} \tag{5.3}
\end{equation*}
$$

Thus, Equations (5.2) have the followinc solution satisfying the requirements of periodicity:

$$
\begin{equation*}
u_{0}(\tau)=0, \quad v_{0}(\tau)=V_{0} \tag{5.4}
\end{equation*}
$$

The consideration of the system of equations for $u_{1 / 2}(\tau)$ and $v_{1 / 2}(\tau)$ leads to the following results:

$$
\begin{equation*}
\alpha_{1 / 2}=0, \quad u_{1 / 2}(\tau)=0, \quad v_{1 / 2}(\tau)=V_{1 / 2} \tag{5.5}
\end{equation*}
$$

Furthermore, we construct the equation for $v_{1}(\tau)$

$$
\begin{equation*}
v_{1}^{\prime \prime}+2 \alpha_{0} v_{1}^{\prime}=\left[-2 \alpha_{0} \alpha_{1}+\left(\frac{\partial \Phi_{2}}{\partial z_{z}}\right)_{0}+\alpha_{0}\left(\frac{\partial \Phi_{2}}{\partial z_{2}^{\prime}}\right)_{0}\right] v_{0} \tag{5.6}
\end{equation*}
$$

The periodicity condition for the solution $v_{1}(\tau)$ is reduced to the absence of a constant term in the right-hand part of this equation. Hence we get

$$
\begin{equation*}
\alpha_{1}=\frac{1}{2 T_{1}} \int_{0}^{T_{1}}\left[\left(\frac{\partial \Phi_{2}}{\partial z_{2}^{\prime}}\right)_{0} \mp \frac{i}{\omega_{2}}\left(\frac{\partial \Phi_{2}}{\partial z_{2}}\right)_{0}\right] d \tau \tag{5.7}
\end{equation*}
$$

Obviously, the same expression for α_{1} will be obtained if the periodic solution expanded in powers of $\mu^{1 / 3}$ is considered.
6. The investigation of stability for the cases of double and triple roots of the amplitude equation for a quasi-linear self-contained system with a single degree of freedom was carried out in [4]. This work obtained the expansions for one root of the characteristic equation in powers of $\mu^{1 / 2}$ and $\mu^{1 / 3}$. The second root for the self-contained system is equal to unity. The characteristic exponents a used in the present paper and the roots of the characteristic equation ρ are related by

$$
\begin{equation*}
a=T^{-1} \ln \rho \quad(T \text { is the solution period) } \tag{6.1}
\end{equation*}
$$

Present results show that for the system with two degrees of freedom there exist four branches of the characteristic exponent from which, in the case of incommensurable frequencies, one branch is real and nonzero in general, the second branch zero and two branches complex. Since the function $x_{1}(t)$ entering into the solution of system (1.1) is of the same form as the solution of a system with a single degree of freedom obtainable by neglecting the second equation in (1.1), the function $\nu_{1}(t)$ from the solution of the equations in variations for system (1.1) is of the same form as the solution of the equation in variations for a system with a single degree of freedom. Therefore, the first branches of the characteristic exponent for both systems possess identical forms of expansions in integral of fractional power of the small parameter, Second branches in both cases are zero.

The signs of the real parts of the characteristic exponents are determined for sufficiently small μ by the first, nonzero, coefficients of the exponent expansions. Then, one of the stability conditions coincides in form with the corresonding condition of stability for a system with a single degree of freedom if this condition $C_{n}\left(T_{0}\right)$ is everywhere replaced by $C_{1}=\left(T_{1}\right)$. The second condition of stability is the inequality

$$
\begin{equation*}
\int_{0}^{T_{1}}\left(\frac{\partial T_{2}}{\partial z_{2}^{\prime}}\right)_{0} d \mathfrak{\tau}=\int_{0}^{T_{1}}\left(\frac{\partial F_{2}}{\partial x_{2}}\right)_{0} d t<0 \tag{6.2}
\end{equation*}
$$

This result can be easily generalized for the case of the self-contained quasi-linear system with n degrees of freedom when one frequency of the generating system is incommensurable with any other frequency. Also, in addition to the basic stability condition analogous to the condition for a single degree of freedom, there will esist $n-1$ auxiliary conditions of the type (6.2).

BIBLIOGRAPHY

1. Proskuriakov, A.P., K postroenilu periodicheskikh reshenii kvazilineinykh avtonomnykh sistem s neskol 'kimi stepeniami svobody (On the construction of periodic solutions of quasi-iinear autonomous systems with several degrees of freedom). PNM Vol.26, № 2, 1962.
2. Proskuriakov, A.P., Periodicheskie reshenila kvazilineinykh avtonomnykh sistem s odnoi stepen'iu svobody v vide riadov po drobnym stepeniam parametrov (Periodic solutions of quasi-linear autonomous systems with a single degree of freedom in the form of infinite series with fractional powers of the parameter). PNM Vol.25, No 5, 1961.
3. Malkin, I.G., Nekotorye zadachi teori1 nelineinykh kolebanii (Certain Problems in the Theory of Nonlinear Oscillations). . Gostekhizdat,1956.
4. Proskuriakov, A.P., Ustoichivost' periodicheskikh reshenif kvazilineinykh avtonomnykh sistem s odnoi stepen'1u svobody (Stability of periodic solutions of quasi-linear autonomous systems with one degree of freedom). PMM Vol.27, N2 3, 1963.
